skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Stockmeier, L"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Nature does nothing in vain. Through millions of years of revolution, living organisms have evolved hierarchical and anisotropic structures to maximize their survival in complex and dynamic environments. Many of these structures are intrinsically heterogeneous and often with functional gradient distributions. Understanding the convergent and divergent gradient designs in the natural material systems may lead to a new paradigm shift in the development of next-generation high-performance bio-/nano-materials and devices that are critically needed in energy, environmental remediation, and biomedical fields. Herein, we review the basic design principles and highlight some of the prominent examples of gradient biological materials/structures discovered over the past few decades. Interestingly, despite the anisotropic features in one direction (i.e., in terms of gradient compositions and properties), these natural structures retain certain levels of symmetry, including point symmetry, axial symmetry, mirror symmetry, and 3D symmetry. We further demonstrate the state-of-the-art fabrication techniques and procedures in making the biomimetic counterparts. Some prototypes showcase optimized properties surpassing those seen in the biological model systems. Finally, we summarize the latest applications of these synthetic functional gradient materials and structures in robotics, biomedical, energy, and environmental fields, along with their future perspectives. This review may stimulate scientists, engineers, and inventors to explore this emerging and disruptive research methodology and endeavors. 
    more » « less
  2. Abstract Neural circuit function is shaped both by the cell types that comprise the circuit and the connections between those cell types1. Neural cell types have previously been defined by morphology2, 3, electrophysiology4, 5, transcriptomic expression6–8, connectivity9–13, or even a combination of such modalities14–16. More recently, the Patch-seq technique has enabled the characterization of morphology (M), electrophysiology (E), and transcriptomic (T) properties from individual cells17–20. Using this technique, these properties were integrated to define 28, inhibitory multimodal, MET-types in mouse primary visual cortex21. It is unknown how these MET-types connect within the broader cortical circuitry however. Here we show that we can predict the MET-type identity of inhibitory cells within a large-scale electron microscopy (EM) dataset and these MET-types have distinct ultrastructural features and synapse connectivity patterns. We found that EM Martinotti cells, a well defined morphological cell type22, 23known to be Somatostatin positive (Sst+)24, 25, were successfully predicted to belong to Sst+ MET-types. Each identified MET-type had distinct axon myelination patterns and synapsed onto specific excitatory targets. Our results demonstrate that morphological features can be used to link cell type identities across imaging modalities, which enables further comparison of connectivity in relation to transcriptomic or electrophysiological properties. Furthermore, our results show that MET-types have distinct connectivity patterns, supporting the use of MET-types and connectivity to meaningfully define cell types. 
    more » « less
  3. Free, publicly-accessible full text available September 1, 2026
  4. We report structural, optical, and electro-optical properties of polycrystalline YFe2O4 thin films, deposited on (0001) sapphire substrates using the electron-beam deposition technique. The optical spectra of a 120 nm YFe2O4 show Fe d to d on-site and O 2p to Fe 3d, Y 4d, and Y 5s charge-transfer electronic excitations. Anomalies in the temperature dependence data of the charge-transfer excitations and the splitting of the 4.46 eV charge-transfer peak strongly suggest a structural distortion at 180 ± 10 K. Evidence of such a structural distortion is also manifested in the surface resistance versus temperature data. In addition, the YFe2O4 thin film at low temperatures shows strong electro-optical properties, as high as 9% in the energy range of 1 - 2.5 eV, for applied electric fields up to 500 V.cm−1. 
    more » « less
  5. This paper presents a search for massive, charged, long-lived particles with the ATLAS detector at the Large Hadron Collider using an integrated luminosity of $$140~fb^{−1}$$ of proton-proton collisions at $$\sqrt{s}=13$$~TeV. These particles are expected to move significantly slower than the speed of light. In this paper, two signal regions provide complementary sensitivity. In one region, events are selected with at least one charged-particle track with high transverse momentum, large specific ionisation measured in the pixel detector, and time of flight to the hadronic calorimeter inconsistent with the speed of light. In the other region, events are selected with at least two tracks of opposite charge which both have a high transverse momentum and an anomalously large specific ionisation. The search is sensitive to particles with lifetimes greater than about 3 ns with masses ranging from 200 GeV to 3 TeV. The results are interpreted to set constraints on the supersymmetric pair production of long-lived R-hadrons, charginos and staus, with mass limits extending beyond those from previous searches in broad ranges of lifetime 
    more » « less
    Free, publicly-accessible full text available July 1, 2026
  6. This report presents a comprehensive collection of searches for new physics performed by the ATLAS Collaboration during the Run~2 period of data taking at the Large Hadron Collider, from 2015 to 2018, corresponding to about 140~$$^{-1}$$ of $$\sqrt{s}=13$$~TeV proton--proton collision data. These searches cover a variety of beyond-the-standard model topics such as dark matter candidates, new vector bosons, hidden-sector particles, leptoquarks, or vector-like quarks, among others. Searches for supersymmetric particles or extended Higgs sectors are explicitly excluded as these are the subject of separate reports by the Collaboration. For each topic, the most relevant searches are described, focusing on their importance and sensitivity and, when appropriate, highlighting the experimental techniques employed. In addition to the description of each analysis, complementary searches are compared, and the overall sensitivity of the ATLAS experiment to each type of new physics is discussed. Summary plots and statistical combinations of multiple searches are included whenever possible. 
    more » « less
    Free, publicly-accessible full text available April 22, 2026
  7. Top-quark pair production is observed in lead–lead ( Pb + Pb ) collisions at s NN = 5.02 TeV at the Large Hadron Collider with the ATLAS detector. The data sample was recorded in 2015 and 2018, amounting to an integrated luminosity of 1.9 nb 1 . Events with exactly one electron and one muon and at least two jets are selected. Top-quark pair production is measured with an observed (expected) significance of 5.0 (4.1) standard deviations. The measured top-quark pair production cross section is σ t t ¯ = 3.6 0.9 + 1.0 ( stat ) 0.5 + 0.8 ( syst ) μ b , with a total relative uncertainty of 31%, and is consistent with theoretical predictions using a range of different nuclear parton distribution functions. The observation of this process consolidates the evidence of the existence of all quark flavors in the preequilibrium stage of the quark-gluon plasma at very high energy densities, similar to the conditions present in the early Universe. © 2025 CERN, for the ATLAS Collaboration2025CERN 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  8. A<sc>bstract</sc> A study of the Higgs boson decaying into bottom quarks (H→$$ b\overline{b} $$ b b ¯ ) and charm quarks (H→$$ c\overline{c} $$ c c ¯ ) is performed, in the associated production channel of the Higgs boson with aWorZboson, using 140 fb−1of proton-proton collision data at$$ \sqrt{s} $$ s = 13 TeV collected by the ATLAS detector. The individual production ofWHandZHwithH→$$ b\overline{b} $$ b b ¯ is established with observed (expected) significances of 5.3 (5.5) and 4.9 (5.6) standard deviations, respectively. Differential cross-section measurements of the gauge boson transverse momentum within the simplified template cross-section framework are performed in a total of 13 kinematical fiducial regions. The search for theH→$$ c\overline{c} $$ c c ¯ decay yields an observed (expected) upper limit at 95% confidence level of 11.5 (10.6) times the Standard Model prediction. The results are also used to set constraints on the charm coupling modifier, resulting in|κc| <4.2 at 95% confidence level. Combining theH→$$ b\overline{b} $$ b b ¯ andH→$$ c\overline{c} $$ c c ¯ measurements constrains the absolute value of the ratio of Higgs-charm and Higgs-bottom coupling modifiers (|κcb|) to be less than 3.6 at 95% confidence level. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026